A Decision Problem for Ultimately Periodic Sets in Non-Standard Numeration Systems

Emilie Charlier Michel Rigo

Department of Mathematics University of Liège

MFCS Torun, August 25-29 2008

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

BACKGROUND

Let's start with classical k-ary numeration system, $k \ge 2$:

$$n = \sum_{i=0}^{\ell} d_i \, k^i, \, d_{\ell} \neq 0, \quad \operatorname{rep}_k(n) = d_{\ell} \cdots d_0 \in \{0, \dots, k-1\}^*$$

DEFINITION

A set $X \subseteq \mathbb{N}$ is *k*-recognizable, if the language

$$\operatorname{rep}_k(X) = \{\operatorname{rep}_k(x) \mid x \in X\}$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

is regular, i.e. accepted by a finite automaton.

BACKGROUND

EXAMPLES OF k-RECOGNIZABLE SETS

- ▶ In base 2, the set of even integers: $\operatorname{rep}_2(2\mathbb{N}) = 1\{0,1\}^*0 + \varepsilon$.
- ▶ In base 2, the set of powers of 2: $\operatorname{rep}_2(\{2^i | i \in \mathbb{N}\}) = 10^*$.
- In base 2, the "*Thue-Morse set*": {n ∈ N | S(rep₂(n)) ≡ 0 (mod 2)}.
- Given a k-automatic sequence (x_n)_{n≥0} over an alphabet Σ, then for all σ ∈ Σ, the set {i ∈ N | x_i = σ} is k-recognizable.

ション ふゆ く 山 マ チャット しょうくしゃ

DIVISIBILITY CRITERIA

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable $\forall k \geq 2$.

DEFINITION

Two integers $k, \ell \ge 2$ are *multiplicatively independant* if $k^m = \ell^n \Rightarrow m = n = 0$.

THEOREM (COBHAM, 1969)

Let $k, \ell \ge 2$ be two multiplicatively independant integers. If $X \subseteq \mathbb{N}$ is both k- and ℓ -recognizable, then X is ultimately periodic, i.e. a finite union of arithmetic progressions.

Theorem (J. HONKALA, 1985)

Let $k \ge 2$. It is decidable whether or not a k-recognizable set is ultimately periodic.

Sketch of Honkala's Decision Procedure

- The input is a finite automaton \mathcal{A}_X accepting rep_k(X).
- ► The number of states of A_X produces an upper bound on the possible (minimal) index and period for X.
- Consequently, there are finitely many candidates to check.
- ► For each pair (i, p) of candidates, produce a DFA for all possible corresponding ultimately periodic sets and compare it with A_X.

Definition

A numeration system is an increasing sequence $U = (U_i)_{i \ge 0}$ of integers s.t. $U_0 = 1$ and $C_U := \sup_{i \ge 0} \lceil U_{i+1}/U_i \rceil$ is finite.

The greedy *U*-representation of a positive integer *n* is the unique finite word rep_{*U*}(*n*) = $d_{\ell} \cdots d_0$ over $A_U := \{0, \dots, C_U - 1\}$ satisfying

$$n=\sum_{i=0}^\ell d_i\,U_i,\,\,d_\ell
eq 0\,\, ext{and}\,\,\sum_{i=0}^t d_iU_i < U_{t+1},\,orall t=0,\ldots,\ell.$$

If $x = x_{\ell} \cdots x_0$ is a word over a finite alphabet of integers, then the *U*-numerical value of x is $\operatorname{val}_U(x) = \sum_{i=0}^{\ell} x_i U_i$.

A set $X \subseteq \mathbb{N}$ is *U*-recognizable if the language rep_U(X) over A_U is regular.

LINEAR NUMERATION SYSTEMS

DEFINITION

A numeration system $U = (U_i)_{i \ge 0}$ is said to be *linear (of order k)*, if the sequence U satisfies a homogenous linear recurrence relation like

$$U_{i+k} = a_1 U_{i+k-1} + \cdots + a_k U_i, \ i \geq 0,$$

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

for some $k \geq 1$, $a_1, \ldots, a_k \in \mathbb{Z}$ and $a_k \neq 0$.

EXAMPLE (FIBONACCI SYSTEM)

Consider the sequence defined by $F_0 = 1$, $F_1 = 2$ and $F_{i+2} = F_{i+1} + F_i$, $i \ge 0$. The Fibonacci (linear numeration) system is given by $F = (F_i)_{i\ge 0} = (1, 2, 3, 5, 8, 13, ...)$.

1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	101010
7	1010	14	100001	21	1000000

ション ふゆ く 山 マ チャット しょうくしゃ

The "pattern" 11 is forbidden, $A_F = \{0, 1\}$.

A DECISION PROBLEM

Lemma

Let $U = (U_i)_{i \ge 0}$ be a (linear) numeration system such that \mathbb{N} is U-recognizable. Any ultimately periodic $X \subseteq \mathbb{N}$ is U-recognizable and a DFA accepting $\operatorname{rep}_U(X)$ can be effectively obtained.

REMARK (J. SHALLIT, 1994)

If \mathbb{N} is *U*-recognizable, then *U* is linear.

PROBLEM

Given a linear numeration system U and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions ?

"PSEUDO-RESULT"

Let X be ultimately periodic with period p_X (X is U-recognizable).

Any DFA accepting $rep_U(X)$ has at least $f(p_X)$ states, where f is increasing.

"PSEUDO-COROLLARY"

Let $X \subseteq \mathbb{N}$ be a *U*-recognizable set of integers s.t. rep_{*U*}(X) is accepted by \mathcal{A}_X with k states.

If X is ultimately periodic with period p, then

$$\boxed{f(p) \le k} \quad \text{with} \begin{cases} k \text{ fixed} \\ f \text{ increasing.} \end{cases}$$

 \Rightarrow The number of candidates for p is bounded from above.

A technical hypothesis :

$$\lim_{i \to +\infty} U_{i+1} - U_i = +\infty.$$
 (1)

ション ふゆ く 山 マ チャット しょうくしゃ

Most systems are built on an exponential sequence $(U_i)_{i\geq 0}$.

LEMMA

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying (1). For all j, there exists L such that for all $\ell \ge L$,

$$10^{\ell - |\operatorname{rep}_U(t)|}\operatorname{rep}_U(t), \ t = 0, \dots, U_j - 1$$

are greedy U-representations. Otherwise stated, if w is a greedy U-representation, then for r large enough, 10^rw is also a greedy U-representation. $N_U(m) \in \{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i \ge 0}$.

EXAMPLE (FIBONACCI SYSTEM, CONTINUED)

 $(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, ...)$ and $N_F(4) = 4$. $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, ...)$ and $N_F(11) = 7$.

PROPOSITION

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying (1). If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period p_X , then any DFA accepting $\operatorname{rep}_U(X)$ has at least $N_U(p_X)$ states.

COROLLARY

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying (1). Assume that

$$\lim_{m\to+\infty}N_U(m)=+\infty.$$

Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_U(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_0 such that for all $m \ge s_0$, $N_U(m) > d$, which is effectively computable.

LEMMA

If $U = (U_i)_{i \ge 0}$ is a linear numeration system satisfying a recurrence relation of order $k \ge 1$ of the kind

$$U_{i+k} = a_1 U_{i+k-1} + \cdots + a_k U_i, i \ge 0,$$

with $a_k = \pm 1$, then $\lim_{m \to +\infty} N_U(m) = +\infty$.

PROPOSITION (FIBONACCI)

Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_X (and index a_X). Any DFA accepting $\operatorname{rep}_F(X)$ has at least p_X states.

▶ $w^{-1}L = \{u \mid wu \in L\} \leftrightarrow$ states of minimal automaton of L

$$10^{n_{p_X}} 10^{n_{p_X-1}} \cdots 10^{n_1} 0^{|\operatorname{rep}_F(p_X-1)|-|\operatorname{rep}_F(t)|} \operatorname{rep}_F(t)$$

is a greedy *F*-representation.

IDEA OF THE PROOF WITH THE FIBONACCI SYSTEM

Moreover n₁,..., n_{pX} can be chosen s.t. ∀j = 1,..., p_X, val_F(10^{nj}...10<sup>n₁+|rep_F(p_X-1)|) ≡ j mod p_X and val_F(10<sup>n₁+|rep_F(p_X-1)|) ≥ a_X.
For i,j ∈ {1,..., p_X}, i ≠ j, the words 10^{n_i}...10^{n₁} and 10^{n_j}...10^{n₁}
</sup></sup>

will generate different states in the minimal automaton of $\operatorname{rep}_F(X)$. This can be shown by concatenating some word of length $|\operatorname{rep}_F(p_X - 1)|$.

$w^{-1}L = \{u \mid wu \in L\} \leftrightarrow$ states of minimal automaton of L

$$X = (11\mathbb{N} + 3) \cup \{2\}, a_X = 3, p_X = 11, |\operatorname{rep}_F(10)| = 5$$

Working in $(F_i \mod 11)_{i \ge 0}$:

··· 21	10110285321	10110285321					
	1	00000000000	1				
1	0000000001	000000000000	2				
	1	0000000010	$1+2 \in X$				
1	0000000001	0000000010	$2+2 \notin X$				
$\Rightarrow (10^5)^{-1} \operatorname{rep}_F(X) eq (10^9 10^5)^{-1} \operatorname{rep}_F(X)$							

Second Part (Upper Bound on the Index)

For a sequence $U = (U_i)_{i \ge 0}$ of integers, if $(U_i \mod m)_{i \ge 0}$ is ultimately periodic, we denote its (minimal) index by $\iota_U(m)$.

PROPOSITION

Let $U = (U_i)_{i \ge 0}$ be a linear numeration system.

Let $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period p_X and index a_X .

Then any deterministic finite automaton accepting $\operatorname{rep}_U(X)$ has at least $|\operatorname{rep}_U(a_X - 1)| - \iota_U(p_X)$ states.

If p_x is bounded and a_x is increasing, then the number of states is increasing.

THEOREM (E. C., M. RIGO)

Let $U = (U_i)_{i \ge 0}$ be a linear numeration system such that \mathbb{N} is *U*-recognizable and satisfying a recurrence relation of order k of the kind

$$U_{i+k}=a_1U_{i+k-1}+\cdots+a_kU_i,\ i\geq 0,$$

ション ふゆ く 山 マ チャット しょうくしゃ

with $a_k = \pm 1$ and such that $\lim_{i \to +\infty} U_{i+1} - U_i = +\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

WORK IN PROGRESS

Remark

Whenever $gcd(a_1, \ldots, a_k) = g \ge 2$, for all $n \ge 1$ and for all *i* large enough, we have $U_i \equiv 0 \mod g^n$ and $N_U(m)$ does not tend to infinity.

EXAMPLES

• Honkala's integer bases: $U_{n+1} = k U_n$

•
$$U_{n+2} = 2U_{n+1} + 2U_n$$

 $a, b, 2(a + b), 2(2a + 3b), 4(3a + 4b), 4(8a + 11b) \dots$

QUESTION

What happen whenever $\gcd(a_1,\ldots,a_k)=1$ and $a_k \neq \pm 1$?

Learn more about linear recurrent sequences mod m

- ▶ H.T. Engstrom, On sequences defined by linear recurrence relations, *Trans. Amer. Math. Soc.* **33** (1931).
- M. Ward, The characteristic number of a sequence of integers satisfying a linear recursion relation, *Trans. Amer. Math. Soc.* 35 (1933).
- ▶ M. Hall, An isomorphism between linear recurring sequences and algebraic rings, *Trans. Amer. Math. Soc.* 44 (1938).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 G. Rauzy, Relations de récurrence modulo m, Séminaire Delange-Pisot, 1963/1964.

To solve the case where $gcd(a_1,\ldots,a_k)=1$.