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Background

Let's start with classical k-ary numeration system, k ≥ 2:

n =
∑̀
i=0

di k
i , d` 6= 0, repk(n) = d` · · · d0 ∈ {0, . . . , k − 1}∗

Definition

A set X ⊆ N is k-recognizable, if the language

repk(X ) = {repk(x) | x ∈ X}

is regular, i.e. accepted by a �nite automaton.



Background

Examples of k-recognizable sets

I In base 2, the set of even integers: rep2(2N) = 1{0, 1}∗0 + ε.

I In base 2, the set of powers of 2: rep2({2i |i ∈ N}) = 1 0∗.

I In base 2, the �Thue-Morse set�: {n ∈ N | S(rep2(n)) ≡ 0
(mod 2)}.

I Given a k-automatic sequence (xn)n≥0 over an alphabet Σ,
then for all σ ∈ Σ, the set {i ∈ N | xi = σ} is k-recognizable.



Background

Divisibility criteria

If X ⊆ N is ultimately periodic, then X is k-recognizable ∀k ≥ 2.

X = (3N + 1) ∪ (2N + 2) ∪ {3}, Index = 4, Period = 6
χX = � � � � | � � � � � � � � � � � � · · ·

Definition

Two integers k , ` ≥ 2 are multiplicatively independant if
km = `n ⇒ m = n = 0.

Theorem (Cobham, 1969)

Let k , ` ≥ 2 be two multiplicatively independant integers.

If X ⊆ N is both k- and `-recognizable, then X is ultimately

periodic, i.e. a �nite union of arithmetic progressions.



Start for this work

Theorem (J. Honkala, 1985)

Let k ≥ 2. It is decidable whether or not a k-recognizable set is

ultimately periodic.

Sketch of Honkala's Decision Procedure

I The input is a �nite automaton AX accepting repk(X ).

I The number of states of AX produces an upper bound on the
possible (minimal) index and period for X .

I Consequently, there are �nitely many candidates to check.

I For each pair (i , p) of candidates, produce a DFA for all
possible corresponding ultimately periodic sets and compare it
with AX .



Non standard Numeration Systems

Definition

A numeration system is an increasing sequence U = (Ui )i≥0 of
integers s.t. U0 = 1 and CU := supi≥0dUi+1/Uie is �nite.

The greedy U-representation of a positive integer n is the unique
�nite word repU(n) = d` · · · d0 over AU := {0, . . . ,CU − 1}
satisfying

n =
∑̀
i=0

di Ui , d` 6= 0 and
t∑

i=0

diUi < Ut+1, ∀t = 0, . . . , `.

If x = x` · · · x0 is a word over a �nite alphabet of integers, then the
U-numerical value of x is valU(x) =

∑`
i=0 xiUi .

A set X ⊆ N is U-recognizable if the language repU(X ) over AU is
regular.



Linear Numeration Systems

Definition

A numeration system U = (Ui )i≥0 is said to be linear (of order k) ,
if the sequence U satis�es a homogenous linear recurrence relation
like

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

for some k ≥ 1, a1, . . . , ak ∈ Z and ak 6= 0.



Example (Fibonacci System)

Consider the sequence de�ned by F0 = 1, F1 = 2 and
Fi+2 = Fi+1 + Fi , i ≥ 0. The Fibonacci (linear numeration) system

is given by F = (Fi )i≥0 = (1, 2, 3, 5, 8, 13, . . .).

1 1 8 10000 15 100010
2 10 9 10001 16 100100
3 100 10 10010 17 100101
4 101 11 10100 18 101000
5 1000 12 10101 19 101001
6 1001 13 100000 20 101010
7 1010 14 100001 21 1000000

The �pattern� 11 is forbidden, AF = {0, 1}.



A Decision Problem

Lemma

Let U = (Ui )i≥0 be a (linear) numeration system such that N is

U-recognizable. Any ultimately periodic X ⊆ N is U-recognizable

and a DFA accepting repU(X ) can be e�ectively obtained.

Remark (J. Shallit, 1994)

If N is U-recognizable, then U is linear.

Problem

Given a linear numeration system U and a U-recognizable set

X ⊆ N. Is it decidable whether or not X is ultimately periodic, i.e.,

whether or not X is a �nite union of arithmetic progressions ?



First part (Upper Bound on the Period)

�pseudo-result�

Let X be ultimately periodic with period pX (X is U-recognizable).

Any DFA accepting repU(X ) has at least f (pX ) states,
where f is increasing.

�pseudo-corollary�

Let X ⊆ N be a U-recognizable set of integers s.t. repU(X ) is
accepted by AX with k states.

If X is ultimately periodic with period p, then

f (p) ≤ k with

{
k �xed
f increasing.

⇒ The number of candidates for p is bounded from above.



A technical hypothesis :

lim
i→+∞

Ui+1 − Ui = +∞. (1)

Most systems are built on an exponential sequence (Ui )i≥0.

Lemma

Let U = (Ui )i≥0 be a numeration system satisfying (1).
For all j , there exists L such that for all ` ≥ L,

10`−| repU(t)| repU(t), t = 0, . . . ,Uj − 1

are greedy U-representations. Otherwise stated,

if w is a greedy U-representation, then for r large enough,

10rw is also a greedy U-representation.



NU(m) ∈ {1, . . . ,m} denotes the number of values that are taken
in�nitely often by the sequence (Ui mod m)i≥0.

Example (Fibonacci System, continued)

(Fi mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .) and NF (4) = 4.
(Fi mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .) and
NF (11) = 7.

Proposition

Let U = (Ui )i≥0 be a numeration system satisfying (1).
If X ⊆ N is an ultimately periodic U-recognizable set of period pX ,

then any DFA accepting repU(X ) has at least NU(pX ) states.



Corollary

Let U = (Ui )i≥0 be a numeration system satisfying (1).
Assume that

lim
m→+∞

NU(m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that

repU(X ) is accepted by a DFA with d states is bounded by the

smallest integer s0 such that for all m ≥ s0, NU(m) > d, which is

e�ectively computable.

Lemma

If U = (Ui )i≥0 is a linear numeration system satisfying a recurrence

relation of order k ≥ 1 of the kind

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

with ak = ±1, then limm→+∞ NU(m) = +∞.



Idea of the Proof with the Fibonacci System

Proposition (Fibonacci)

Let X ⊆ N be ultimately periodic with period pX (and index aX ).
Any DFA accepting repF (X ) has at least pX states.

I w−1L = {u | wu ∈ L} ↔ states of minimal automaton of L

I F is purely periodic mod pX .
Indeed, Fn+2 = Fn+1 + Fn and Fn = Fn+2 − Fn+1.

I If i , j ≥ aX , i 6≡ j mod pX then there exists t < pX s.t. either
i + t ∈ X and j + t 6∈ X , or i + t 6∈ X and j + t ∈ X .

I ∃n1, . . . , npX , ∀t = 0, . . . , pX − 1,

10npX 10npX−1 · · · 10n10| repF (pX−1)|−| repF (t)| repF (t)

is a greedy F -representation.



Idea of the Proof with the Fibonacci System

I Moreover n1, . . . , npX can be chosen s.t. ∀j = 1, . . . , pX ,

valF (10nj · · · 10n1+| repF (pX−1)|) ≡ j mod pX

and valF (10n1+| repF (pX−1)|) ≥ aX .

I For i , j ∈ {1, . . . , pX}, i 6= j , the words

10ni · · · 10n1 and 10nj · · · 10n1

will generate di�erent states in the minimal automaton of
repF (X ). This can be shown by concatenating some word of
length | repF (pX − 1)|.



w−1L = {u | wu ∈ L} ↔ states of minimal automaton of L

X = (11N + 3) ∪ {2}, aX = 3, pX = 11, | repF (10)| = 5

Working in (Fi mod 11)i≥0 :

· · · 2 1 1 0 1 10 2 8 5 3 2 1 1 0 1 10 2 8 5 3 2 1

1 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2

1 0 0 0 0 0 0 0 0 1 0 1+2 ∈ X

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2+2 /∈ X

⇒ (105)−1 repF (X ) 6= (109105)−1 repF (X )



Second Part (Upper Bound on the Index)

For a sequence U = (Ui )i≥0 of integers, if (Ui mod m)i≥0 is
ultimately periodic, we denote its (minimal) index by ιU(m).

Proposition

Let U = (Ui )i≥0 be a linear numeration system.

Let X ⊆ N be an ultimately periodic U-recognizable set of period

pX and index aX .

Then any deterministic �nite automaton accepting repU(X ) has at

least | repU(aX − 1)| − ιU(pX ) states.

If px is bounded and ax is increasing, then the number of states is
increasing.



A Decision Procedure

Theorem (E. C., M. Rigo)

Let U = (Ui )i≥0 be a linear numeration system such that N is

U-recognizable and satisfying a recurrence relation of order k of the

kind

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

with ak = ±1 and such that limi→+∞ Ui+1 − Ui = +∞.
It is decidable whether or not a U-recognizable set is ultimately

periodic.



Work in Progress

Remark

Whenever gcd(a1, . . . , ak) = g ≥ 2, for all n ≥ 1 and for all i large
enough, we have Ui ≡ 0 mod gn and NU(m) does not tend to
in�nity.

Examples

I Honkala's integer bases: Un+1 = k Un

I Un+2 = 2Un+1 + 2Un

a, b, 2(a + b), 2(2a + 3b), 4(3a + 4b), 4(8a + 11b) . . .

Question

What happen whenever gcd(a1, . . . , ak) = 1 and ak 6= ±1 ?



Work in progress

Learn more about linear recurrent sequences mod m . . .
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To solve the case where gcd(a1, . . . , ak) = 1.


