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BACKGROUND

Let’s start with classical k-ary numeration system, k > 2:

l
n=> dikl,d#0, repy(n)=ds---do€f0,... k-1}
i=0

DEFINITION

A set X C N is k-recognizable, if the language

repc(X) = {repi(x) | x € X}

is regular, i.e. accepted by a finite automaton.



BACKGROUND

EXAMPLES OF k-RECOGNIZABLE SETS

> In base 2, the set of even integers: rep,(2N) = 1{0,1}*0 + ¢.
> In base 2, the set of powers of 2: rep,({2/|i € N}) = 10*.

> In base 2, the “ Thue-Morse set”: {n € N | S(rep,(n)) =0
(mod 2)}.

» Given a k-automatic sequence (x,)n>0 over an alphabet ¥,
then for all 0 € X, the set {i € N | x; = o} is k-recognizable.



BACKGROUND

DIVISIBILITY CRITERIA
If X C N is ultimately periodic, then X is k-recognizable Yk > 2.

X =(BN+1)U (2N +2)U{3}, Index = 4, Period =6
yx=HHHEN | EEEEENE EEEEEE -

DEFINITION

Two integers k, £ > 2 are multiplicatively independant if
km=¢0"= m=n=0.

THEOREM (COBHAM, 1969)

Let k,£ > 2 be two multiplicatively independant integers.
If X C N is both k- and {-recognizable, then X is ultimately
periodic, i.e. a finite union of arithmetic progressions.



START FOR THIS WORK

THEOREM (J. HONKALA, 1985)

Let k > 2. It is decidable whether or not a k-recognizable set is
ultimately periodic.

Sketch of Honkala’'s Decision Procedure
» The input is a finite automaton Ax accepting rep,(X).
» The number of states of Ax produces an upper bound on the
possible (minimal) index and period for X.
» Consequently, there are finitely many candidates to check.

» For each pair (i, p) of candidates, produce a DFA for all

possible corresponding ultimately periodic sets and compare it
with Ax.



NON STANDARD NUMERATION SYSTEMS

DEFINITION

A numeration system is an increasing sequence U = (U;);>o of
integers s.t. Up =1 and Cy := sup;>|Ujy1/Ui] is finite.

The greedy U-representation of a positive integer n is the unique
finite word repy(n) = dp---dy over Ay :={0,...,Cy — 1}
satisfying

4 t
n:Zd,'U,', dg;éOand ZdiU,'<Ut+1,Vt:0,...,€.
i=0 i=0

If x = x7---xp is a word over a finite alphabet of integers, then the
U-numerical value of x is valy(x) = Zf:o Gl

A set X C N is U-recognizable if the language rep(X) over Ay is
regular.



LINEAR NUMERATION SYSTEMS

DEFINITION

A numeration system U = (U;);>o is said to be linear (of order k) ,
if the sequence U satisfies a homogenous linear recurrence relation
like

Uik = a1Uipk—1 + -+ acUi, i >0,

for some k >1, a1,...,ax € Z and a, # 0.



EXAMPLE (FIBONACCI SYSTEM)

Consider the sequence defined by Fp =1, F; = 2 and

Fiio = Fit1+ Fi, i > 0. The Fibonacci (linear numeration) system

is given by F = (Fi)i>0 = (1,2,3,5,8,13,...).

1

10
100
101
1000
1001
1010

~N o 1w N

The “pattern” 11 is forbidden, Ar = {0,1}.
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9
10
11
12
13
14

10000
10001
10010
10100
10101
100000
100001

15
16
17
18
19
20
21

100010
100100
100101
101000
101001
101010
1000000



A DECISION PROBLEM

LEMMA

Let U = (U;)i>o0 be a (linear) numeration system such that N is
U-recognizable. Any ultimately periodic X C N is U-recognizable
and a DFA accepting repy(X) can be effectively obtained.

REMARK (J. SHALLIT, 1994)

If N is U-recognizable, then U is linear.

PROBLEM

Given a linear numeration system U and a U-recognizable set
X C N. Is it decidable whether or not X is ultimately periodic, i.e.,
whether or not X is a finite union of arithmetic progressions 7



FIRST PART (UPPER BOUND ON THE PERIOD)

“PSEUDO-RESULT”
Let X be ultimately periodic with period px (X is U-recognizable).

Any DFA accepting rep;,(X) has at least f(px) states,
where f is increasing.

“PSEUDO-COROLLARY”

Let X C N be a U-recognizable set of integers s.t. rep;(X) is
accepted by Ax with k states.

If X is ultimately periodic with period p, then

k fixed

A= i Wlth{ f increasing.

= The number of candidates for p is bounded from above.



A technical hypothesis :

lim Ui — Uj = 400. (1)

i——+4o00

Most systems are built on an exponential sequence (U;)i>o.

LEMMA

Let U = (U;)i>o be a numeration system satisfying (1).

For all j, there exists L such that for all £ > L,
10¢7IrePu®lvep  (¢), £ =0,...,U; — 1

are greedy U-representations. Otherwise stated,
if w is a greedy U-representation, then for r large enough,
10"w is also a greedy U-representation.



Ny(m) € {1,..., m} denotes the number of values that are taken
infinitely often by the sequence (U; mod m);>o.

EXAMPLE (FIBONACCI SYSTEM, CONTINUED)

(Fi mod 4)=(1,2,3,1,0,1,1,2,3,...) and Ng(4) = 4.
(F; mod 11) = (1,2,3,5,8,2,10,1,0,1,1,2,3,...) and
Ng(11) =7.

PROPOSITION

Let U = (U;)i>0 be a numeration system satisfying (1).
If X C N is an ultimately periodic U-recognizable set of period px,
then any DFA accepting repy(X) has at least Ny(px) states.



COROLLARY
Let U = (U;)i>o be a numeration system satisfying (1).
Assume that

lim  Ny(m) = 4oc.

m—--00

Then the period of an ultimately periodic set X C N such that
repy(X) is accepted by a DFA with d states is bounded by the
smallest integer sy such that for all m > sy, Ny(m) > d, which is
effectively computable.

LEMMA

If U= (Ui)i>o is a linear numeration system satisfying a recurrence
relation of order k > 1 of the kind

U,‘+k = 81Ui+k*1 P oee A akUi7 IZ O)

with a = +1, then limp_ 4o Ny(m) = +oo.



IDEA OF THE PROOF WITH THE FIBONACCI SYSTEM

PROPOSITION (FIBONACCI)

Let X C N be ultimately periodic with period px (and index ax).
Any DFA accepting repg(X) has at least px states.

v

w L = {u| wu € L} « states of minimal automaton of L

v

F is purely periodic mod px.
Indeed, Fn+2:Fn+1+Fn and Fn: n+2—Fn+1.

If i,j > ax, i % j mod px then there exists t < px s.t. either
i+teXandj+tg X, ori+tg Xandj+teX.

Elnl,...,an,Vt:O,..., x — 1,

v

v

10"x 10"x 1 . .. 10™ 0l rePr(Px—1)I=lrepr(6)l pap (1)

is a greedy F-representation.



IDEA OF THE PROOF WITH THE FIBONACCI SYSTEM

> Moreover ny,...,np, can be chosensit. Vj =1,..., px,
valg(107% - - 10mHlrerr(px =1y = ;' mod py

and valg(10mFlrePr(px—1)l) > 55

» Fori,j€{1,...,px} i #J, the words
10" ...10™ and 10% ...10™

will generate different states in the minimal automaton of
repe(X). This can be shown by concatenating some word of
length [ repr(px —1)].



w L = {u| wu € L} « states of minimal automaton of L

X = (1IN +3)U {2}, ax =3, px = 11, | repg(10)| =5

Working in (F; mod 11);>¢ :

-21110110285321|10110285321
110000000000 1
110000000001/ 0000000000
110000000010 |14+42€ X
1/0000000001|{0000000010|24+2¢ X

= (10%) " repp(X) # (10°10°) ! repg(X)



SECOND PART (UPPER BOUND ON THE INDEX)

For a sequence U = (U;)i>o of integers, if (U; mod m);>¢ is
ultimately periodic, we denote its (minimal) index by ¢y(m).

PROPOSITION

Let U = (U;)i>o0 be a linear numeration system.

Let X C N be an ultimately periodic U-recognizable set of period
px and index ax.

Then any deterministic finite automaton accepting rep(X) has at
least | repy(ax — 1)| — tu(px) states.

If px is bounded and ay is increasing, then the number of states is
increasing.



A DECISION PROCEDURE

TueOREM (E. C., M. R1GO)

Let U = (U;)i>o be a linear numeration system such that N is
U-recognizable and satisfying a recurrence relation of order k of the
kind

Uik = arUipk—1+---+acl;, i >0,
with ay = +1 and such that lim;_ . Uiy1 — U; = +00.

It is decidable whether or not a U-recognizable set is ultimately
periodic.



WORK IN PROGRESS

Whenever gcd(ai,...,ax) =g > 2, for all n > 1 and for all i large
enough, we have U; =0 mod g" and Ny(m) does not tend to
infinity.

EXAMPLES

» Honkala's integer bases: Up11 = k U,
> Un+2 = 2Un+1 + 2Un

a,b,2(a+ b),2(2a+ 3b),4(3a+ 4b),4(8a+ 11b)...

QUESTION

What happen whenever ged(ay,...,ax) =1 and ay # £1 7



WORK IN PROGRESS

Learn more about linear recurrent sequences mod m . ..

» H.T. Engstrom, On sequences defined by linear recurrence
relations, Trans. Amer. Math. Soc. 33 (1931).

» M. Ward, The characteristic number of a sequence of integers
satisfying a linear recursion relation, Trans. Amer. Math. Soc.
35 (1933).

» M. Hall, An isomorphism between linear recurring sequences
and algebraic rings, Trans. Amer. Math. Soc. 44 (1938).

» G. Rauzy, Relations de récurrence modulo m, Séminaire
Delange-Pisot, 1963/1964.

To solve the case where ged(ay, ..., ax) = 1.



