A Decision Problem for Ultimately Periodic Sets in Non-Standard Numeration Systems

Emilie Charlier Michel Rigo

Department of Mathematics
University of Liège

MFCS
Torun, August 25-29 2008

Background

Let's start with classical k-ary numeration system, $k \geq 2$:

$$
n=\sum_{i=0}^{\ell} d_{i} k^{i}, d_{\ell} \neq 0, \quad \operatorname{rep}_{k}(n)=d_{\ell} \cdots d_{0} \in\{0, \ldots, k-1\}^{*}
$$

DEFINITION

A set $X \subseteq \mathbb{N}$ is k-recognizable, if the language

$$
\operatorname{rep}_{k}(X)=\left\{\operatorname{rep}_{k}(x) \mid x \in X\right\}
$$

is regular, i.e. accepted by a finite automaton.

BACKGROUND

EXAMPLES OF k-RECOGNIZABLE SETS

- In base 2 , the set of even integers: $\operatorname{rep}_{2}(2 \mathbb{N})=1\{0,1\}^{*} 0+\varepsilon$.
- In base 2, the set of powers of 2: $\operatorname{rep}_{2}\left(\left\{2^{i} \mid i \in \mathbb{N}\right\}\right)=10^{*}$.
- In base 2, the "Thue-Morse set": $\left\{n \in \mathbb{N} \mid S\left(\operatorname{rep}_{2}(n)\right) \equiv 0\right.$ $(\bmod 2)\}$.
- Given a k-automatic sequence $\left(x_{n}\right)_{n \geq 0}$ over an alphabet Σ, then for all $\sigma \in \Sigma$, the set $\left\{i \in \mathbb{N} \mid x_{i}=\sigma\right\}$ is k-recognizable.

DIVISIBILITY CRITERIA

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable $\forall k \geq 2$.

$$
\begin{aligned}
& X=(3 \mathbb{N}+1) \cup(2 \mathbb{N}+2) \cup\{3\} \text {, Index }=4 \text {, Period }=6 \\
& \chi_{x}=\square \square \square \square \mid \square \ldots
\end{aligned}
$$

DEFINITION

Two integers $k, \ell \geq 2$ are multiplicatively independant if $k^{m}=\ell^{n} \Rightarrow m=n=0$.

Theorem (CobHAm, 1969)

Let $k, \ell \geq 2$ be two multiplicatively independant integers. If $X \subseteq \mathbb{N}$ is both k - and ℓ-recognizable, then X is ultimately periodic, i.e. a finite union of arithmetic progressions.

Theorem (J. Honkala, 1985)

Let $k \geq 2$. It is decidable whether or not a k-recognizable set is ultimately periodic.

Sketch of Honkala's Decision Procedure

- The input is a finite automaton \mathcal{A}_{X} accepting rep (X).
- The number of states of \mathcal{A}_{X} produces an upper bound on the possible (minimal) index and period for X.
- Consequently, there are finitely many candidates to check.
- For each pair (i, p) of candidates, produce a DFA for all possible corresponding ultimately periodic sets and compare it with \mathcal{A}_{X}.

Non standard Numeration Systems

Definition

A numeration system is an increasing sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers s.t. $U_{0}=1$ and $C_{U}:=\sup _{i \geq 0}\left\lceil U_{i+1} / U_{i}\right\rceil$ is finite.
The greedy U-representation of a positive integer n is the unique finite word $\operatorname{rep}_{U}(n)=d_{\ell} \cdots d_{0}$ over $A_{U}:=\left\{0, \ldots, C_{U}-1\right\}$ satisfying

$$
n=\sum_{i=0}^{\ell} d_{i} U_{i}, d_{\ell} \neq 0 \text { and } \sum_{i=0}^{t} d_{i} U_{i}<U_{t+1}, \forall t=0, \ldots, \ell
$$

If $x=x_{\ell} \cdots x_{0}$ is a word over a finite alphabet of integers, then the U-numerical value of x is $\operatorname{val}_{U}(x)=\sum_{i=0}^{\ell} x_{i} U_{i}$.
A set $X \subseteq \mathbb{N}$ is U-recognizable if the language $\operatorname{rep}_{U}(X)$ over A_{U} is regular.

DEFINITION

A numeration system $U=\left(U_{i}\right)_{i \geq 0}$ is said to be linear (of order k), if the sequence U satisfies a homogenous linear recurrence relation like

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

for some $k \geq 1, a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and $a_{k} \neq 0$.

Example (Fibonacci System)

Consider the sequence defined by $F_{0}=1, F_{1}=2$ and $F_{i+2}=F_{i+1}+F_{i}, i \geq 0$. The Fibonacci (linear numeration) system is given by $F=\left(F_{i}\right)_{i \geq 0}=(1,2,3,5,8,13, \ldots)$.

1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	101010
7	1010	14	100001	21	1000000

The "pattern" 11 is forbidden, $A_{F}=\{0,1\}$.

A Decision Problem

LEMMA

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a (linear) numeration system such that \mathbb{N} is U-recognizable. Any ultimately periodic $X \subseteq \mathbb{N}$ is U-recognizable and a DFA accepting rep (X) can be effectively obtained.

Remark (J. Shallit, 1994)

If \mathbb{N} is U-recognizable, then U is linear.

PROBLEM

Given a linear numeration system U and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions?

First part (Upper Bound on the Period)

"PSEUDO-RESULT"

Let X be ultimately periodic with period $p_{X}(X$ is U-recognizable).
Any DFA accepting rep $U(X)$ has at least $f\left(p_{X}\right)$ states, where f is increasing.

"PSEUDO-COROLLARY"

Let $X \subseteq \mathbb{N}$ be a U-recognizable set of integers s.t. $\operatorname{rep}_{U}(X)$ is accepted by \mathcal{A}_{X} with k states.

If X is ultimately periodic with period p, then

$$
f(p) \leq k \quad \text { with }\left\{\begin{array}{l}
k \text { fixed } \\
f \text { increasing. }
\end{array}\right.
$$

\Rightarrow The number of candidates for p is bounded from above.

A technical hypothesis:

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty \tag{1}
\end{equation*}
$$

Most systems are built on an exponential sequence $\left(U_{i}\right)_{i \geq 0}$.

LEMMA

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
For all j, there exists L such that for all $\ell \geq L$,

$$
10^{\ell-\left|\operatorname{rep}_{U}(t)\right|} \operatorname{rep}_{U}(t), t=0, \ldots, U_{j}-1
$$

are greedy U-representations. Otherwise stated, if w is a greedy U-representation, then for r large enough, $10^{r} w$ is also a greedy U-representation.
$N_{U}(m) \in\{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $\left(U_{i} \bmod m\right)_{i \geq 0}$.

Example (Fibonacci System, continued)

$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$ and $N_{F}(4)=4$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$ and $N_{F}(11)=7$.

PROPOSITION

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period p_{X}, then any DFA accepting rep (X) has at least $N_{U}\left(p_{X}\right)$ states.

Corollary

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
Assume that

$$
\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty
$$

Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_{U}(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_{0} such that for all $m \geq s_{0}, N_{U}(m)>d$, which is effectively computable.

LEMMA

If $U=\left(U_{i}\right)_{i \geq 0}$ is a linear numeration system satisfying a recurrence relation of order $k \geq 1$ of the kind

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{k}= \pm 1$, then $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.

Idea of the Proof with the Fibonacci System

PROPOSITION (FibONACCI)

Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_{X} (and index a_{X}). Any DFA accepting $\operatorname{rep}_{F}(X)$ has at least p_{X} states.

- $w^{-1} L=\{u \mid w u \in L\} \leftrightarrow$ states of minimal automaton of L
- F is purely periodic $\bmod p_{X}$. Indeed, $F_{n+2}=F_{n+1}+F_{n}$ and $F_{n}=F_{n+2}-F_{n+1}$.
- If $i, j \geq a_{X}, i \not \equiv j \bmod p_{X}$ then there exists $t<p_{X}$ s.t. either $i+t \in X$ and $j+t \notin X$, or $i+t \notin X$ and $j+t \in X$.
- $\exists n_{1}, \ldots, n_{p_{X}}, \forall t=0, \ldots, p_{X}-1$,

$$
10^{n_{P X}} 10^{n_{P X}-1} \cdots 10^{n_{1}} 0^{\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|-\left|\operatorname{rep}_{F}(t)\right|} \operatorname{rep}_{F}(t)
$$

is a greedy F-representation.

Idea of the Proof with the Fibonacci System

- Moreover $n_{1}, \ldots, n_{p_{X}}$ can be chosen s.t. $\forall j=1, \ldots, p_{X}$,

$$
\operatorname{val}_{F}\left(10^{n_{j}} \cdots 10^{n_{1}+\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|}\right) \equiv j \quad \bmod p_{X}
$$

and $\operatorname{val}_{F}\left(10^{n_{1}+\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|}\right) \geq a_{X}$.

- For $i, j \in\left\{1, \ldots, p_{X}\right\}, i \neq j$, the words

$$
10^{n_{i}} \cdots 10^{n_{1}} \text { and } 10^{n_{j}} \cdots 10^{n_{1}}
$$

will generate different states in the minimal automaton of $\operatorname{rep}_{F}(X)$. This can be shown by concatenating some word of length $\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|$.
$w^{-1} L=\{u \mid w u \in L\} \leftrightarrow$ states of minimal automaton of L

$X=(11 \mathbb{N}+3) \cup\{2\}, a_{X}=3, p_{X}=11,\left|\operatorname{rep}_{F}(10)\right|=5$

Working in $\left(F_{i} \bmod 11\right)_{i \geq 0}$:

Second Part (Upper Bound on the Index)

For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers, if $\left(U_{i} \bmod m\right)_{i \geq 0}$ is ultimately periodic, we denote its (minimal) index by $\iota_{U}(m)$.

PROPOSITION

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system.
Let $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period p_{X} and index a_{X}.

Then any deterministic finite automaton accepting rep (X) has at least $\left|\operatorname{rep}_{U}\left(a_{X}-1\right)\right|-\iota U\left(p_{X}\right)$ states.

If p_{x} is bounded and a_{x} is increasing, then the number of states is increasing.

A Decision Procedure

Theorem (E. C., M. Rigo)

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system such that \mathbb{N} is U-recognizable and satisfying a recurrence relation of order k of the kind

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{k}= \pm 1$ and such that $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

Work in Progress

REMARK

Whenever $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=g \geq 2$, for all $n \geq 1$ and for all i large enough, we have $U_{i} \equiv 0 \bmod g^{n}$ and $N_{U}(m)$ does not tend to infinity.

EXAMPLES

- Honkala's integer bases: $U_{n+1}=k U_{n}$
- $U_{n+2}=2 U_{n+1}+2 U_{n}$

$$
a, b, 2(a+b), 2(2 a+3 b), 4(3 a+4 b), 4(8 a+11 b) \ldots
$$

QuEstion

What happen whenever $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$ and $a_{k} \neq \pm 1$?

Work in Progress

Learn more about linear recurrent sequences mod $m \ldots$

- H.T. Engstrom, On sequences defined by linear recurrence relations, Trans. Amer. Math. Soc. 33 (1931).
- M. Ward, The characteristic number of a sequence of integers satisfying a linear recursion relation, Trans. Amer. Math. Soc. 35 (1933).
- M. Hall, An isomorphism between linear recurring sequences and algebraic rings, Trans. Amer. Math. Soc. 44 (1938).
- G. Rauzy, Relations de récurrence modulo m, Séminaire Delange-Pisot, 1963/1964.
To solve the case where $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$.

